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Abstract 

 
A challenge in developing informative neuroimaging biomarkers for early diagnosis of 

Alzheimer’s disease (AD) is the need to identify biomarkers that are evident before the 

onset of clinical symptoms, and which have sufficient sensitivity and specificity on an 

individual patient basis.  Recent literature suggests that spatial patterns of brain atrophy 

discriminate among AD, mild cognitive impairment (MCI) and cognitively normal (CN) 

older adults with high accuracy on an individual basis, thereby offering promise that 

subtle brain changes can be detected during prodromal AD stages.   

 Here, we investigate whether these spatial patterns of brain atrophy can be 

detected in CN and MCI individuals and whether they are associated with cognitive 

decline. Images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were 

used to construct a pattern classifier that recognizes spatial patterns of brain atrophy 

that best distinguish AD patients from CN on an individual person basis.  This classifier 

was subsequently applied to longitudinal MRI scans of CN and MCI participants in the 

Baltimore Longitudinal Study of Aging (BLSA) neuroimaging study.  The degree to 

which AD-like patterns were present in CN and MCI subjects was evaluated 

longitudinally in relation to cognitive performance.  

 The oldest BLSA CN individuals showed progressively increasing AD-like 

patterns of atrophy, and individuals with these patterns had reduced cognitive 

performance. MCI was associated with steeper longitudinal increases of AD-like 

patterns of atrophy, which separated them from CN (ROC area under the curve equal to 

0.89).  

 Our results suggest that imaging-based spatial patterns of brain atrophy of AD, 

evaluated with sophisticated pattern analysis and recognition methods, may be useful in 

discriminating among CN individuals who are likely to be stable versus those who will 



show cognitive decline. Future prospective studies will elucidate the temporal dynamics 

of spatial atrophy patterns and the emergence of clinical symptoms. 
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Introduction 
 
Alzheimer’s disease (AD) poses significant medical, social, and socioeconomic 

challenges, as it is the most common dementia, with incidence rates doubling every five 

years after the age of 65. Although there are currently no disease-modifying treatments, 

many potential treatments are being tested, some of which may have significant side-

effects.   Thus, it is critical to identify biomarkers that identify early stages of the disease 

and facilitate effective and well-targeted treatment before significant neuronal damage.   

 
Neuroimaging measures have been playing a central role in the search for biomarkers 

of AD that can be used for early diagnosis and monitoring of disease progression and 

response to therapy.  Recent studies have focused on individuals with mild cognitive 

impairment (MCI), who have higher rates of conversion to AD (as high as 15%/year) 

than CN individuals (Petersen et al., 1999). Many investigators consider MCI to be early 

AD, as it has been shown that many MCI individuals have similar patterns of atrophy 

and β-amyloid deposition as AD patients (Chetelat et al., 2002; Fan et al., 2008; Karas 

et al., 2004; Klunk et al., 2006; Rowe et al., 2007; Ziolko et al., 2006), albeit some MCI 

individuals remain clinically stable over time and, consistently, some also present 

normal structural brain profiles (Fan et al., 2008).   Given the high rates of conversion 

from MCI to AD and the abundant neuropathology already evident in MCI post-mortem 

(Mufson et al., 1999; Scheff et al., 2006), greater emphasis should be placed on 

identifying those CN individuals who present evolving AD-like patterns of brain atrophy 

and might be relatively more likely to progress to MCI and AD.  Identification of such 

individuals at a very early stage before the onset of clinical symptoms may lead to more 

effective intervention of pharmacological treatments for AD as these become available. 



Several longitudinal studies of normal aging have measured brain changes 

through regions of interest (ROI) and voxel-based analysis (Convit et al., 2000; Convit 

et al., 1997; Golomb et al., 1993; Mueller et al., 1998; Resnick et al., 2001; Resnick et 

al., 2003; Sullivan et al., 2002) and have increased our understanding about how 

different brain regions change in normal aging populations.  Although total brain or ROI 

volumes may be reduced with aging and AD, their inter-individual variations and overlap 

across populations render them insufficient diagnostic tools for individuals, especially at 

early disease stages. The development of high-dimensional pattern classification 

methods in recent years (Fan et al., 2007b; Kloppel et al., 2008; Lao et al., 2004; 

Vemuri et al., 2008) offers the potential to obtain highly sensitive and specific 

neuroimaging biomarkers from individuals, rather than groups, which has great 

importance for early diagnosis and for individual patient management. These methods 

use sophisticated pattern analysis algorithms that are trained to identify patterns of 

normal or abnormal structure and function (Davatzikos et al., 2005a), which are used 

for classification at the individual level.  We have shown previously that spatial patterns 

of brain atrophy discriminate between CN and AD with high accuracy (areas under the 

ROC curve: 0.965) (Fan et al., 2008). 

 
Here, we investigate whether these spatial patterns of brain atrophy can distinguish 

among CN individuals and whether these patterns are associated with cognitive 

decline.  The current study is the first, to our knowledge, to utilize high-dimensional 

pattern classification to evaluate the progression of abnormal patterns of brain atrophy 

in a prospectively followed cognitively normal cohort of older adults. We first train the 

classifier to recognize spatial patterns of brain atrophy that distinguish AD from CN 

individuals in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. The 

classifier produces an algorithm for determination of a quantitative value for each 



individual, which we refer to as the SPARE-AD index (Spatial Pattern of Abnormality for 

Recognition of Early AD).  More positive SPARE-AD implies a more AD-like pattern of 

brain atrophy, and more negative SPARE-AD implies a more normal pattern of brain 

morphology. The ADNI classifier is then applied to MRI scans of CN and MCI 

participants from the Baltimore Longitudinal Study of Aging (BLSA) to determine the 

presence and longitudinal progression of these patterns via longitudinal progression of 

the SPARE-AD index.  Finally, the cognitive performance of CN individuals displaying 

abnormal patterns of brain atrophy is compared to CN individuals displaying normal 

brain structure. Since the BLSA is a prospective study, it provides the opportunity to 

detect very early stages of AD.  

 
 
 
Material and Methods 
 
BLSA participants 
 
The BLSA is a prospective longitudinal study of aging. Its neuroimaging component, 

currently in its 14th year, has followed 158 individuals (age 55 -85 years at enrollment) 

with annual or semi-annual imaging and clinical evaluations. The neuroimaging 

substudy of the BLSA is described in detail in (Resnick et al., 2000; Resnick et al., 

2003). Exclusionary criteria at initial evaluation were: CNS disease (epilepsy, stroke, 

bipolar illness, previous diagnosis of dementia), severe cardiovascular disease 

(myocardial infarction, coronary artery disease requiring angioplasty or bypass surgery), 

severe pulmonary disease, or metastatic cancer.   The current study used longitudinal 

data from 109 BLSA participants that have remained cognitively normal up to 

September 2007.  It also used longitudinal data from 15 individuals that were diagnosed 

with MCI over the course of the BLSA neuroimaging study.  A diagnosis of MCI was 

assigned by consensus conference if a participant had deficits in either a single 



cognitive domain (usually memory) or had more than one cognitive deficit but did not 

have functional loss in activities of daily living.  Participants were evaluated at the 

consensus conference if their Blessed Information Memory Concentration (Blessed et 

al., 1968) score was greater than 3 or if their informant or subject Clinical Dementia 

Rating (CDR) (Morris, 1997) score was 0.5 or above.  The demographic characteristics 

of the BLSA participants in this study are shown in Table 1.  

 
The BLSA and neuroimaging studies are approved by the local institutional review 

boards, and all participants gave written informed consent prior to each assessment. 

 
ADNI participants 
 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is described in www.adni-

info.org. The goal of ADNI is to recruit 800 adults, ages 55 to 90, approximately 200 CN 

older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 

years, and 200 people with early AD to be followed for 2 years. For up-to-date 

information see www.adni-info.org. The data of all ADNI participants used in the current 

study have been described previously (Fan et al., 2008). Briefly, MRI scans from 66 CN 

individuals (mean age ± std. deviation 75.18±5.39), and 56 AD patients (77.40±7.02) 

were analyzed and used to construct a classifier to discriminate between CN and AD. 

The MMSE scores (mean ± std. deviation) of the CN and AD groups at baseline were 

29.1±1.0, and 23.1±1.8, respectively. The groups were relatively well-balanced in terms 

of sex (50%, 57% women in CN and AD, respectively).  

 
 
Image acquisition 
 
We used T1-weighted MR images to measure regional patterns of brain atrophy. The 

image acquisition parameters have been described in (Resnick et al., 2001) for BLSA, 

and in www.adni-info.org for ADNI. Briefly, the BLSA protocol included an axial T1-



weighted volumetric spoiled gradient recalled (SPGR) series (axial acquisition, TR = 

35ms, TE = 5ms, flip angle = 45o, voxel dimensions of .94 X .94 X 1.5 mm slice 

thickness). The ADNI protocol included a sagittal volumetric 3D MPRAGE  with 

1.25 × 1.25 mm in-plane spatial resolution and 1.2 mm thick sagittal slices (8° flip 

angle). TR and TE values of the ADNI protocol were somewhat variable, but the target 

values were TE ~ 3.9ms and TR ~ 8.9ms. 

 
Image analysis 
 
  Images were first preprocessed according to previously validated and published 

techniques (Goldszal et al., 1998). The pre-processing steps included 1) alignment to 

the AC-PC plane; 2) removal of extra-cranial material (skull-stripping); 3)Tissue 

segmentation into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF), 

(Pham and Prince, 1999); 4) High-dimensional image warping (Shen and Davatzikos, 

2002) to a standardized coordinate system, a brain atlas (template) that was aligned 

with the Montreal Neurologic Institute coordinate space (Kabani et al., 1998); 5) 

formation of regional volumetric maps, named RAVENS maps (Davatzikos et al., 2001; 

Goldszal et al., 1998; Shen and Davatzikos, 2003), using tissue preserving image 

warping (Goldszal et al., 1998). RAVENS map intensity values quantify the regional 

distribution of GM, WM, and CSF, with one RAVENS map for each tissue type. In 

particular, RAVENS values in the template's (stereotaxic) space are directly 

proportional to the volume of the respective structures in the original brain scan. 

Therefore, regional volumetric measurements and comparisons are performed via 

measurements and comparisons of the respective RAVENS maps. For example, 

patterns of GM atrophy in the temporal lobe are quantified by patterns of RAVENS 

decrease in the temporal lobe in the stereotaxic space.  

 



 The RAVENS approach has been extensively validated (Davatzikos et al., 2001; 

Goldszal et al., 1998) and applied to a variety of studies (Beresford et al., 2006a; 

Beresford et al., 2006b; Driscoll et al., 2007; Gur et al., 2006; Kim et al., 2003; Resnick 

et al., 2001; Resnick et al., 2004; Resnick et al., 2000; Resnick et al., 2003; Stewart et 

al., 2006). It bears similarities with the “optimized voxel based morphometry (VBM)” 

approach (Good et al., 2002), except it uses a highly conforming high-dimensional 

image warping algorithm that captures finer structural details.  

 
 
High-dimensional Classification: the SPARE-AD index as a biomarker for AD 
 

We applied a high-dimensional pattern classification approach, which we have 

published and applied in a number of neuroimaging studies (Davatzikos et al., 2005b; 

Fan et al., 2008; Fan et al., 2007a; Fan et al., 2005; Lao et al., 2004). This approach 

considers all brain regions jointly and identifies a minimal set of regions whose volumes 

jointly maximally differentiate between CN and AD on an individual scan basis. As 

described in the Introduction, the pattern classification method provides a SPARE-AD 

index; positive SPARE-AD implies AD-like brain structure, and more negative SPARE-

AD implies more normal structure.  The pattern classifier determined the spatial 

patterns of brain atrophy that best distinguished AD patients from CN on an individual 

person basis using the ADNI sample; as anticipated, these patterns tended to reflect 

regional atrophy in the temporal lobe, posterior cingulate, and other areas known to be 

affected in AD (Fan et al., 2008).   

 
We first evaluated the frequency of more AD-like SPARE-AD values in CN 

individuals for different age groups, and compared RAVENS maps of CN individuals in 

the upper quartile versus remaining 75% of SPARE-AD scores.  To illustrate the 

network of regions contributing to SPARE-AD differences between CN in the top 



quartile versus lower quartiles of SPARE-AD, group comparisons were performed via 

voxel-based statistical analysis software 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5) of respective RAVENS maps that were 

normalized by an approximation to the total intra-cranial volume (ICV), so that spatial 

patterns of atrophy are examined without the confounding effect of head size.  This 

approximation to ICV was obtained by summing the volumes of GM, WM, ventricular, 

as well as of CSF within the sulci of the cortex that are contained within the outer brain 

boundary defined by the skull stripping algorithm. The approximation to ICV, which 

correlates (r=0.93) with the more traditional approach to definition of ICV, was 

employed in this analysis for consistency with the approach used in the development of 

the ADNI classifier.  RAVENS maps were smoothed prior to statistical analysis using 8 

mm full-width at half-maximum (FWHM) smoothing kernel.  

 
Next, we evaluated the longitudinal progression of SPARE-AD in normals and in 

MCI by applying the classifier developed on the ADNI sample to all longitudinal MRI 

scans of the BLSA CN and MCI individuals, thereby allowing us to follow the evolution 

of the SPARE-AD index with increasing age.  Mixed-effects models were used to 

estimate individual SPARE-AD rates of change, defined as annual changes in SPARE-

AD scores.  Mixed models with cognitive status (MCI versus CN) as a predictor were 

used to test the difference in rates for MCI versus CN.    

 
 

Cognitive evaluations and associations with SPARE-AD 
 
To determine the relationship between SPARE-AD progression and cognitive 

performance, we examined the SPARE-AD index values and rates of change in the 

SPARE-AD index in relation to performance on tests of mental status and memory.  

From the battery of neuropsychological tests administered to participants in conjunction 



with each imaging evaluation, we selected four measures for analysis.  The four 

measures used in the current analyses were the total score from the Mini-Mental State 

Exam (MMSE) (Folstein et al., 1975) to assess mental status, the immediate free recall 

score (sum of five immediate recall trials) and the long-delay free recall score on the 

California Verbal Learning Test (CVLT) (Delis et al., 1987) to assess verbal learning 

and immediate and delayed recall,  and the total number of errors from the Benton 

Visual Retention Test (BVRT) (Benton, 1974) to assess short-term visual memory.  We 

focused on these measures because changes in new learning and recall are among the 

earliest cognitive changes detected during the prodromal phase of AD (Grober et al., 

2008).  To examine relationships between SPARE-AD and cognitive performance, CN 

individuals in the highest quartile of SPARE-AD index values (most AD-like) were 

compared with the remaining sample. Relationships between SPARE-AD and the four 

measures of cognitive performance were examined by t-tests for unadjusted analyses 

and by analysis of covariance for analyses adjusted for age and sex.    

 
 
Results 
 
 
Prevalence of AD-Like SPARE-AD in CN 
 
Table 2 summarizes the SPARE-AD index values as a function of age decade for the 

CN BLSA participants, including all 818 scans of the 109 CN. In particular, in Table 2 

we have summarized the age distribution of positive SPARE-AD scores, as well as of 

top 25% SPARE-AD scores.  We report each scan individually (numbers not in 

parentheses) and numbers of subjects (numbers in parentheses) that fall in each age 

group. For the latter, we used average SPARE-AD and average age. Percentages are 

reported relative to the number of scans (subjects) in the respective age range. Overall, 

CN below the age of 80 had negative SPARE-AD. However, more AD-like scores were 



more frequent in older individuals, even though these individuals had normal cognition 

by clinical consensus criteria. Fig. 1 plots the mean SPARE-AD score of each of the 

109 CN individuals against mean age over each participant’s follow-up period. The 

Pearson correlation between mean SPARE-AD score and mean age is 0.43 (p < 

.0001), which is highly significant. Although the quadratic term does not reach 

significance, a Box-Cox transformation (with lambda = -3) provides the best fit to the 

data (r = 0.44; p < 0.001) and indicates the presence of a nonlinear association.  

 
Spatial patterns of atrophy  
 
In order to visually investigate the spatial pattern of regional volumetric differences 

between the CNs with the highest SPARE-AD scores (the top quartile, referred to as 

CN_high) and the CNs with SPARE-AD scores in the lower 75% (referred to as 

CN_low), we performed voxel-wise analysis of the GM and WM RAVENS maps. Fig. 2 

shows regions where the CN_high showed less gray and white matter volumes, 

respectively, compared to the CN_low subjects.  Significant decreases in tissue 

volumes in the more AD-like CN were evident primarily in the temporal lobe. We note 

that the classifier used to derive the SPARE-AD score uses regions from the temporal 

lobe, the cingulate and the insula, as described in {Fan, 2008 #2464}, because those 

are the regions that best discriminate between AD and CN. Therefore, it is reasonable 

that the group differences observed herein are primarily located in these regions. Fig. 2 

therefore should be interpreted as a visual representation the atrophy patterns that lead 

to the SPARE-AD scores described in our results. 

  
 Because regions of abnormal white matter on T1 images appear dark and are 

typically segmented as GM, we also examined regions of GM that appeared to have 

greater volumes in the CN_high SPARE-AD group.  The CN_high group appeared to 

have more GM tissue around the ventricles (Fig. 3, left), especially the posterior 



periventricular regions, which are WM regions that tend to present small vessel 

pathology in older individuals.  

 
 
Longitudinal Progression of SPARE-AD in CN 
 
The rates of longitudinal progression of the SPARE-AD index of the 109 CNs are shown 

in Fig. 4, as a function of mean age during each person’s follow-up period. Because the 

number of available follow-up scans varied considerably across individuals, mixed-

effects regression was used to estimate all rates of change and shows significant 

increases in rates of SPARE-AD with age (p < 0.001).  For illustration, the rates are 

shown as a function of age, with a Pearson correlation between rates of SPARE-AD 

change and mean age of 0.45 (p < .0001), with a significant quadratic effect (p < 0.05). 

The increasing longitudinal rates of SPARE-AD change with age are consistent with the 

nonlinearly increasing SPARE-AD values with age shown in the cross-sectional 

analysis in Fig. 1. 

 
 
Longitudinal rate of change of SPARE-AD in MCI 
 
The rates of SPARE-AD change of the 15 participants who were diagnosed with MCI 

over the course of the study are plotted in Fig. 5 against the age of the participants. 

Most of these individuals showed relatively rapid increase of the SPARE-AD index, 

even though their SPARE-AD scores were largely in the negative range (only 14 of the 

97 scans had positive scores consistent with their relatively mild stage of impairment).  

Mixed-effects models were used to compare rates of change in CN versus MCI.  Rates 

of change were significantly greater in MCI compared with CN (estimate = 0.15, SE = 

0.017, p < 0.0001). 

 
Separability of CN and MCI on an individual subject basis, based on rate of SPARE-AD 
change. 



 
For individual patient management, it is important to be able to determine whether the 

individual is likely to remain stable or convert to MCI.  We constructed a receiver 

operating characteristic (ROC) curve, by varying the threshold applied to the rate of 

SPARE-AD change and assigning individuals with rates of change higher than the 

threshold to MCI, and vice versa for CN. Fig. 6 shows the ROC curve, which achieved 

an area under the curve (AUC) equal to 0.89. 

 
 
Relationship between cognitive performance and SPARE-AD in CN. 
 

Cross-sectional analyses of the four cognitive measures (CVLT Sum of 

Immediate Free Recall, CVLT Delayed Free Recall, and BVRT errors) in relation to 

SPARE-AD were performed using subgroups determined from the mean SPARE-AD, 

the SPARE-AD at first imaging visit, and the SPARE-AD at the last imaging visit.  

Cognitive performance between SPARE-AD groups was compared by t-test for 

unadjusted index values, and by analysis of covariance for SPARE-AD adjusted for age 

and sex.  As shown in Table 3, using mean SPARE-AD and mean cognitive 

performance unadjusted for age and sex, both short and long-term verbal memory 

scores were significantly lower (p < 0.01) in CN_high compared with CN_low.   Using 

SPARE-AD groupings and cognitive scores from the first visit, MMSE in addition to 

CVLT performance was significantly lower (p < 0.01) in the CN_high compared with 

CN_low groups.  Cognitive performance did not differ between groups using data from 

the last follow-up, and only the results for the MMSE at the first visit remained 

significant after adjusting for age and sex.   

 We also divided individuals by the rate of SPARE-AD change, yielding a high 

versus low change group.  Again, CN with high rates of SPARE-AD increase (the top 



25% rate of SPARE-AD change values) showed significantly lower CVLT learning and 

memory performance compared with CN with low rates of SPARE-AD change (Table 

4).  In addition, CN with high rates of SPARE-AD change had poorer performance on 

the MMSE, a measure of mental status, during the last visit. However, these findings 

were no longer significant after adjustment for age and sex.  

   
Relationship between cognitive performance and SPARE-AD in MCI. 
 
In the group of 15 participants diagnosed as MCI over the course of the study, the 

individuals with positive SPARE-AD, as well as the ones with relatively higher rate of 

SPARE-AD change, showed relatively worse cognitive performance. (We did not 

examine quartiles, due to the small sample size.) Mixed effects regression showed a 

significant association between the SPARE-AD index and MMSE scores of individuals 

diagnosed with MCI (estimate = -1.23, SE = 0.33, p < 0.001, Figure 7). 

 
Discussion 
 
 
A variety of neuroimaging studies have examined brain structure, as well as its 

longitudinal change, in cognitively normal samples and in MCI and AD via group 

analyses. We introduced the use of support vector machine learning approaches for 

classification of cognitively normal and impaired individuals at an individual level, as 

opposed to investigating group differences (Davatzikos et al., 2008, epub 2006; Fan et 

al., 2007b; Lao et al., 2004).  The potential of this approach for individual classification 

and diagnosis has been confirmed recently by others (Duchesne et al., 2008; Kloppel et 

al., 2008; Vemuri et al., 2008). Our current study builds upon a computer-based pattern 

classification method constructed in (Fan et al., 2008) to detect spatial patterns of brain 

atrophy that distinguish between AD patients and CNs on an individual basis.  In this 

study, we applied the classification algorithm that distinguished between AD patients 



and CN subjects in the ADNI to a different sample of CN and MCI subjects from the 

BLSA. This approach generates a CN-like (negative) and AD-like (positive) SPARE-AD 

index of spatial atrophy patterns.  We examined the frequency and longitudinal 

progression of AD-like spatial atrophy patterns in the BLSA cohort of cognitively normal 

elderly, as well as in relatively mild MCI individuals.  

 Our results indicate that although the vast majority of CNs have negative 

SPARE-AD and remain relatively stable over time, the proportion of individuals showing 

more AD-like, even positive, SPARE-AD increases with age.  Comparisons of CN 

groups showing relatively higher SPARE-AD and CNs with relatively lower SPARE-AD 

revealed differences in spatial atrophy patterns consistent with the pattern of atrophy 

characteristic of AD.  A strength of this study is that we examined SPARE-AD patterns 

in CN individuals who have been followed prospectively and remained clinically normal 

during the study follow-up period.   Despite the lack of clinically evident impairment, CN 

individuals in the upper quartile of SPARE-AD, compared with the remaining CN 

individuals, had significantly lower performance on tests of mental status and immediate 

and delayed verbal memory.  Declines in verbal episodic memory are among the 

earliest cognitive changes preceding a diagnosis of dementia, by as much as an 

average of seven years when investigated within the context of a prospective study 

(Grober et al., 2008), and the most robust gray matter differences contributing to the 

SPARE-AD classifier involved temporal lobe structures, which are critical for 

maintenance of intact memory performance.   Moreover, individuals with steeper 

increases in the rate of SPARE-AD had lower cognitive performance.  The majority of 

associations between cognitive performance and SPARE-AD index did not hold after 

adjusting for age, indicating overlap in the factors mediating spatial atrophy change and 

cognitive change.  This is not unexpected, since cognitive decline occurs in parallel with 

brain tissue loss in aging populations, and age-adjustment may remove the relationship 



of interest. More sophisticated dynamic modeling of longitudinal data and statistical 

approaches that avoid age-adjustment in larger samples may be necessary to 

determine whether SPARE-AD has a robust association with cognitive performance.   

 
Notably, cross-sectional relationships between the SPARE-AD index and 

cognitive scores were evident for the mean values and those at the first but not last 

visit.  The absence of associations for the last visits when participants are older is 

consistent with postmortem findings that AD neuropathology may show a different 

pattern in the oldest-old (Giannakopoulos et al., 1995).   Future longitudinal follow up of 

these individuals, half of which are also enrolled in the BLSA autopsy study, will further 

elucidate the predictive value of high SPARE-AD or high rate of SPARE-AD change for 

AD neuropathology. However, our results indicate that the SPARE-AD index might 

potentially be an important early biomarker of AD progression, even before symptoms 

come to clinical attention. The longitudinal stability of the SPARE-AD index in CN with 

more negative scores, as indicated by low rates of change, indicates that SPARE-AD 

might be a relatively objective tool, which will assist in the evaluation of structural 

phenotypes associated with AD and aid in the discrimination of CN who are likely to 

remain stable versus those who are at greatest risk for memory impairment.  

 A much larger proportion of the MCI individuals showed high rate of SPARE-AD 

change, as expected. The MCI group also showed a relatively large and uniform spread 

in the range of ~0.1 to ~0.5/year, which indicates a rather rapid progression of AD-like 

brain atrophy. This agrees with the well documented finding that MCI individuals are 

quite heterogeneous, and that some will convert to AD in the following years whereas 

others will remain stable for a long period. As these MCI individuals were identified 

within the context of prospective BLSA follow-ups rather than referrals to memory 

clinics, they are initially studied during very early stages of impairment and have 



relatively mild MCI. This is in agreement with the fact that most MCIs had negative 

SPARE-AD albeit many had high rates of change, indicating that rate of change may be 

a stronger predictor of conversion to AD.  Further follow up of the entire BLSA cohort 

will allow us to evaluate the predictive value of the SPARE-AD and its rate of change in 

MCI converters to AD. 

 Our ability to distinguish between MCI and CN using a single value, namely the 

rate of SPARE-AD change, is very promising. In addition, CNs with high rates of 

SPARE-AD change showed lower cognitive performance; thus, CNs that were 

“misclassified” as MCI based on SPARE-AD index might actually develop MCI in the 

near future. However, we did not find any particular relationship between the exact year 

of conversion and the SPARE-AD. Some MCI subjects converted at low (negative) 

SPARE-AD values, and others at higher values after years of SPARE-AD increase. 

However, what was common in most MCI subjects was that they had high rates of 

SPARE-AD change. In view of the importance of the accurate estimation of rate of 

SPARE-AD change, future work in our group will emphasize the use of robust image 

analysis methods for estimation of rate of change. 4D segmentation and warping 

methods (Shen and Davatzikos, 2004; Xue et al., 2006) that have recently appeared in 

the literature promise to provide the foundation of future longitudinal analyses. 

 In Figures 2 and 3, voxel-based comparisons of more AD-like and CN-like CN 

individuals demonstrated greater amounts of gray matter in the periventricular regions 

for the more AD-like compared to CN-like group.  While more AD-like CN showed the 

expected AD-like patterns of brain atrophy, primarily in the temporal lobe, the increase 

in estimated gray matter in periventricular regions highlights regions of greater white 

matter abnormalities.  These findings are consistent with a role of increased vascular 

pathology underlying the progression to AD.  It is important to note that the 

periventricular white matter signal abnormalities were not used by the classifier in 



stratifying the subjects, since the classifier constructed from the ADNI AD and CN 

individuals (Fan et al., 2008) incorporated only temporal, prefrontal, and posterior 

parietal cortical regions. Therefore, subjects presenting AD-like atrophy patterns, i.e. 

more positive SPARE-AD scores, were identified based solely on their cortical atrophy 

in those regions. The observation that CN in the upper quartile of SPARE-AD scores 

also showed periventricular leukoareosis suggests that subjects developing AD-like 

atrophy developed vascular pathology in parallel.  These findings are consistent with 

recent evidence that vascular pathology and AD-type neuropathology act in an additive 

manner to increase the risk for clinical dementia(Schneider et al., 2004; Troncoso et al., 

2008), perhaps by increasing the likelihood that a person will cross the clinical threshold 

for a diagnosis of dementia. However, concurrent analysis of quantitative measures of 

progression of vascular disease in combination with measures of atrophy is necessary 

to better understand whether there might be any causal relationship between these two 

pathologies, or whether they simply develop in parallel.  

 

 Another contribution of the current study is that it evaluates the stability of 

pattern classification methods across two different large studies, which is important for 

the clinical applicability and generalization ability of these analysis tools across different 

clinics as biomarkers of AD. In particular, the CN and AD participants of the ADNI study 

were used to construct a classifier that recognizes AD-like patterns of brain atrophy 

(Fan et al., 2008), and was then applied to the BLSA, a completely independent 

longitudinal study of normal aging. Previous reports employing similar methods have 

been restricted to single studies (Davatzikos et al., 2008, epub 2006; Fan et al., 2008; 

Vemuri et al., 2008) and therefore do not test the generalization ability of these 

classifiers as biomarkers of AD. However recent studies testing similar methods across 

sites have begun to emerge (Kloppel et al., 2008). These studies suggest that pattern 



classification methods are likely to be helpful tools in diagnosis of dementia and 

prognosis of its progression.  

 

One limitation in interpreting our findings is that we do not have a gold standard for 

evaluation of the meaning of the positive SPARE-AD score, although we hypothesize 

that increasing spatial atrophy patterns will correspond to increasing AD pathology.  

However, our results suggest that future studies should investigate the temporal 

dynamics of associations between spatial patterns of atrophy, vascular disease, and 

neuropathology in leading to memory impairment and dementia.  Prospective imaging 

studies, such as the BLSA neuroimaging study, in combination with autopsy 

assessment of neuropathology will provide important information on the temporal 

relationships among these cognitive and brain changes in older adults. 
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Group MCI CN 

No. of subjects 15 109 

Sex no. of males 10 60 

Baseline age, 

mean (S.D.) 

77.0 (7.2) 68.8 (7.7) 

Age at last visit, 

mean (S.D.) 

82.9 (7.1) 75.6 (8.1) 

MMSE at first 

visit, mean 

(S.D.) 

27.2 (2.5) 28.9 (1.3) 

MMSE at last 

visit, mean 

(S.D.) 

25.4 (3.0) 28.8 (1.2) 

 

 

Table 1.  Characteristics of the BLSA participants in the current study.  
 
 



 
Age 50~59 60~69 70~79 80~89 >=90 Total 

Total Number of 

scans (subjects) 

27 (3) 304 (42) 329 (44) 146 (20) 12 (0) 818 (109) 

SPARE-AD > 0 

# of scans (subjects) 

% scans (subjects)  

 

0 (0) 

0%(0%) 

 

4 (1) 

1.32%(2.38%) 

 

5 (0) 

1.52%(0%) 

 

22 (3) 

15.07%(15%) 

 

3 (0) 

25.00%(0%) 

 

34 (4) 

4.16%(3.67%) 

SPARE-AD in  

upper quartiles 

# of scans (subjects) 

% of scans 

(subjects) 

 

 

0 (0) 

0%(0%)  

 

 

33 (6) 

10.9%(14.3%) 

 

 

79 (10) 

24%(22.7%) 

 

 

86 (11) 

58.9% (55%) 

 

 

6 (0) 

50% (NaN) 

 

 

204 (27) 

24.9% (24.8%) 

 

Table 2. Statistics of the SPARE-AD for the total of 818 scans of all 109 CN. Numbers 

outside parentheses indicate results obtained by treating each scan as an individual 

measurement, and numbers in parentheses indicate results obtained by finding the 

average SPARE-AD and age of all scans of a given individual, and then using the 

average value as a single measurement of that individual. The total number of scans 

per group is shown at the top row; each subject has multiple scans, one per visit. The 

total number of subjects per group is shown at the top row in parentheses. Percentages 

were calculated relative to the total number of scans (subjects) in each age category.  



 

 Mean 

scores 

Mean 

Scores 

Adjusted 

(for sex and 

age) 

First Visit 

Scores  

First Visit 

Scores 

Adjusted  

Last Visit 

Scores 

Last 

Visit 

Scores 

Adjuste

d 

CVLT 

List A 

Sum 

0.0075 0.5155 0.0020 0.1797 0.3357 0.3754 

CVLT 

Long 

Delay 

Free 

0.0067 0.3150 0.0067 0.2674 0.1817 0.8458 

BVRT 

Errors 

0.0930 0.9728 0.3505 0.8944 0.5994 0.5592 

MMSE 0.1719 0.9666 0.0092 0.0174 0.5203 0.8606 

 
 
Table 3. P-values of cross-sectional differences in cognitive performance between the 

CN subjects having the top 25% of the SPARE-AD scores and the remaining 

75%.  Column labels indicate the scores used in the analysis, e.g. “mean 

scores” indicates the p-value is based on mean cognitive performance and 

mean SPARE-AD index over time.  Covariates in adjusted comparisons are 

baseline age and sex. CVLT California Verbal Learning Test; BVRT Benton 

Visual Retention Test; MMSE Mini-Mental State Exam. 



 

 Mean 

Cognitive 

Score 

Mean 

Cognitive 

Score - 

Adjusted 

First Visit 

Cognitive 

Score 

First Visit 

Cognitive 

Score - 

Adjusted 

Last Visit 

Cognitive 

Score  

Last 

Visit 

Cognitiv

e 

Score - 

Adjusted 

CVLT 

List A 

Sum 

0.0295 0.4784 0.0250 0.3792 0.0190 0.2780 

CVLT 

Long 

Delay 

Free 

0.0448 0.5288 0.0455 0.4476 0.0066 0.1018 

BVRT 

Errors 

0.3987 0.4906 0.6139 0.6453 0.3302 0.9097 

MMSE 0.2020 0.8316 0.3475 0.8306 0.0579 0.1901 

 
Table 4.  P-values of differences in cognitive performance between the CNs with high 

rates of SPARE-AD change and CNs with low rates of SPARE-AD change 

(remaining 75%).  Covariates in adjusted comparisons are baseline age and 

sex.  CVLT California Verbal Learning Test; BVRT Benton Visual Retention 

Test; MMSE Mini-Mental State Exam.   

 



 
 
 

 
 
 

 
Fig. 1.  Mean SPARE-AD scores of each of the 109 CN individuals plotted against 

mean age over their follow-up period.  

 
 
 
 
 
 



 
 
 

 
 

(b) 
Fig. 2. T-statistic voxel-wise maps of RAVENS GM (top) and WM (bottom) comparing 

the 75% of CNs with the lowest SPARE-AD scores (CN-like CNs) minus those 

with the top 25% SPARE-AD (relatively more AD-like CNs).  

 
 

 
 

Fig. 3. Regions in which CNs with the top 25% (highest) SPARE-AD scores had 

significantly higher GM RAVENS maps than the bottom 75%, indicating 

increased peri-ventricular abnormal WM tissue that appears gray in T1-weighted 

images and is segmented as GM.  

 



 
 

Fig. 4. Rate of SPARE-AD change as a function of average age during follow-up 

period, for the 109 CN individuals  

 



Fig. 5. Rate of SPARE-AD change as a function of age in 15 MCI participants.



  
 
 
 
 
 
 

 
 

Fig. 6.  ROC curve of individual subject classification to CN or MCI, based on the rate 

of SPARE-AD change. AUC=0.885 

 
 
 



 
Fig. 7.  SPARE-AD index values plotted against MMSE scores for all MCI individuals. 

The linear effect (p < 0.001) was determined using mixed-effects regression 
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